Enteropathogenic Escherichia coli inhibits ileal sodium-dependent bile acid transporter ASBT.
نویسندگان
چکیده
Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundle-forming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the V(max) of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis.
منابع مشابه
Green tea catechin EGCG inhibits ileal apical sodium bile acid transporter ASBT.
Green tea catechins exhibit hypocholesterolemic effects probably via their inhibitory effects on intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) is responsible for reabsorption of bile acids. The present studies were, therefore, designed to investigate the modulation of ASBT function and membrane expression by green tea catechins in human embryonic ki...
متن کاملHuman ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor.
BACKGROUND Patients with Crohn's disease suffer from intestinal bile acid malabsorption. Intestinal bile acid absorption is mediated by the apical sodium dependent bile acid transporter ASBT/IBAT (SLC10A2). In rats, ASBT is induced by glucocorticoids. AIMS To study whether human ASBT is activated by glucocorticoids and to elucidate the mechanism of regulation. PATIENTS AND METHODS ASBT expr...
متن کاملRat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter.
Although bile acid transport by bile duct epithelial cells, or cholangiocytes, has been postulated, the details of this process remain unclear. Thus, we performed transport studies with [3H]taurocholate in confluent polarized monolayers of normal rat cholangiocytes (NRC). We observed unidirectional (i.e., apical to basolateral) Na+-dependent transcellular transport of [3H]taurocholate. Kinetic ...
متن کاملTransactivation of rat apical sodium-dependent bile acid transporter and increased bile acid transport by 1alpha,25-dihydroxyvitamin D3 via the vitamin D receptor.
Transactivation of the rat apical sodium-dependent bile acid transporter (ASBT; Slc10a2) by 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] via the vitamin D receptor (VDR), was studied. Levels of ASBT protein and mRNA were low in the duodenum and high in the ileum, and both were induced by 1,25(OH)(2)D(3). The nuclear receptor protein, VDR, was present uniformly in the duodenum, jejunum, and...
متن کاملIleal apical Na+-dependent bile acid transporter ASBT is upregulated in rats with diabetes mellitus induced by low doses of streptozotocin.
Increased intestinal bile acid absorption and expansion of the bile acid pool has been implicated in the hypercholesterolemia associated with diabetes mellitus. However, the molecular basis of the increase in bile acid absorption in diabetes mellitus is not fully understood. The ileal apical Na(+)-dependent bile acid transporter (ASBT) is primarily responsible for active reabsorption of the maj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 302 10 شماره
صفحات -
تاریخ انتشار 2012